### Fourier matrices of small rank

#### Abstract

#### Full Text:

PDF#### References

Z. Arad, E. Fisman, M. Muzychuk, Generalized table algebras, Israel J. Math. 114(1) (1999) 29–60.

H. I. Blau, Table algebras, European J. Combin. 30(6) (2009) 1426–1455.

M. Cuntz, Integral modular data and congruences, J. Algebraic Combin. 29(3) (2009) 357–387.

P. Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer–Verlag, New York, 1997.

T. Gannon, Modular data: The algebraic combinatorics of conformal field theory, J. Algebraic Combin. 22(2) (2005) 211–250.

A. Hanaki, I. Miyamoto, Classification of association schemes with small vertices, 2017, available at: math.shinshu-u.ac.jp/ hanaki/as/.

D. G. Higman, Coherent algebras, Linear Algebra Appl. 93 (1987) 209–239.

J. D. Qualls, Lectures on Conformal Field Theory, arXiv:1511.04074 [hep-th].

E. L. Rees, Graphical Discussion of the Roots of a Quartic Equation, Amer. Math. Monthly 29(2) (1922) 51–55.

M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, Springer–Verlag, Berlin, Heidelberg, 2nd edition, 2008.

G. Singh, Classification of homogeneous Fourier matrices, arXiv:1610.05353 [math.RA].

B. Xu, Characters of table algebras and applications to association schemes, J. Combin. Theory Ser. A 115(8) (2008) 1358–1373.

A. Zahabi, Applications of Conformal Field Theory and String Theory in Statistical Systems, Ph.D. dissertation, University of Helsinki, Helsinki, Finland, 2013.

### Refbacks

- There are currently no refbacks.

ISSN: 2148-838X